The system of equations we have is:
![\begin{gathered} 4x+5y=22 \\ 4x+10y=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xacwuksdqynorl5cb3ptqa1j20c0p6tmei.png)
Step 1. substract the second equation from the first equation to eliminate variable x:
![\begin{gathered} 4x+5y=22 \\ -(4x+10y=8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k8mr603gkromg6mkw9bbevghzr1h421f2r.png)
The minus sign changes the signs of the second equation, and now we have:
![\begin{gathered} 4x+5y=22 \\ -4x-10y=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wy3c7laqe78relcr680pk56g00hjqjwpa2.png)
and the result of this is:
Step 2. From the result of the substraction -5y=14, solve for y:
![\begin{gathered} -5y=14 \\ y=(14)/(-5) \\ y=-2.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nknkpjp9gv5z63lz2g7heouj5z3kmsdv6a.png)
Step 3. Substitute this value of y in the first original equation
![4x+5y=22](https://img.qammunity.org/2023/formulas/mathematics/college/yelazet5pwoj8t8u2q8tsvp8xg2e4ar7os.png)
To find the value of x.
We substitute y=-2.8
![4x+5(-2.8)=22](https://img.qammunity.org/2023/formulas/mathematics/college/i0epk2lnn5qua3torhschwpi0nk8vd59vt.png)
Step 4. Solve for x
![\begin{gathered} 4x-14=22 \\ 4x=22+14 \\ 4x=36 \\ x=(36)/(4) \\ x=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sshymv5g57xn8z6cckan88q64jweq2wipp.png)
Answer:
![\begin{gathered} x=9 \\ y=-2.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x83ihrk2vls30bkmjzqca079c5u8o1d3wy.png)