215k views
4 votes
I need help in math can you please help me

I need help in math can you please help me-example-1

1 Answer

1 vote
Answer:
\begin{gathered} \text{Box 1: }(1)/(\cos x) \\ \text{Box 2: cosx} \\ \text{Box 3: cosx} \\ \text{Box 4: cosx} \end{gathered}Explanations:The identity to verify is:
(\csc (x)-\cot (x))/(\sec (x)-1)=\text{ cot(x)}
\begin{gathered} (\csc(x)-\cot(x))/(\sec(x)-1)=\text{ }((1)/(\sin(x))-(\cos (x))/(\sin (x)))/((1)/(\cos (x))-1) \\ =\text{ }((1)/(\sin(x))-(\cos(x))/(\sin(x)))/((1)/(\cos(x))-1)*\frac{\sin (x)\cos (x)_{}}{\sin (x)\cos (x)_{}} \\ =(\cos (x)-\cos ^2(x))/(\sin (x)-\sin (x)\cos (x)) \\ =\frac{\cos (x)(1\text{ - cos(x))}}{\sin (x)(1\text{ - cos(x))}} \\ =(\cos (x))/(\sin (x)) \\ =\text{ cot(x)} \end{gathered}

User TheAptKid
by
3.3k points