517,828 views
45 votes
45 votes
HELP PLZ
21. Find the perimeter of the triangle:
2
A
4715

HELP PLZ 21. Find the perimeter of the triangle: 2 A 4715-example-1
User Mike Gorski
by
3.1k points

1 Answer

30 votes
30 votes

Answer:

16
√(5)+4
√(15) or 51.26902

Explanation:

Consider one of the smaller, right-angled triangles within the main triangle, and use sine to find the hypotenuse of the small triangles:

sinA=opposite/hypotenuse

sin60=4
√(15)/hypotenuse

hypotenuse=
(4√(15) )/((√(3) )/(2) )

hypotenuse=8(
(√(15) )/(√(3) ))

hypotenuse=8
√(5)

So the left and right hand sides of the larger triangle are both 8
√(5) respectively.

To find the base, once again consider the smaller triangle, and this time, use pythagorus:

a²=b²+c²

(8
√(5))²=(4
√(15))²+c²

320=240+c²

80=c²

c=4
√(15)

So the perimeter is 8
√(5)+8
√(5)+4
√(15)=16
√(5)+4
√(15)=51.26902

User Easy
by
3.2k points