Answer:
The measure of angle C is;
![\measuredangle C=35.7^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/bnlj1v26l1dqw796z731jg7gfxzvj0gbwp.png)
Step-by-step explanation:
Given the figure in the attached image.
To get angle C, we will need to first calculate the length of side a.
Applying cosine rule;
![a=\sqrt[]{b^2+c^2-2bc\cos A}](https://img.qammunity.org/2023/formulas/mathematics/college/7xnbkep3x12652wrj0g8xjrt1mq7q2ig18.png)
given;
![\begin{gathered} b=12 \\ c=7 \\ A=55^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r2yj3ewevx55idxnb1f7tkuzyfnta919j8.png)
substituting the given values;
![\begin{gathered} a=\sqrt[]{12^2+7^2-2(12)(7)\cos 55} \\ a=9.83 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p2acqo7zpjh2l0msxcve03p9174mv9xz9u.png)
We can now solve for angle C;
![\begin{gathered} \cos C=(a^2+b^2-c^2)/(2ab) \\ \text{substituting;} \\ \cos C=(9.83^2+12^2-7^2)/(2(9.83)(12)) \\ \cos C=0.81226 \\ C=\cos ^(-1)(0.81226) \\ C=35.7^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l863wlk75ytl2obzyqr0856rjyn5j6v4v6.png)
Therefore, the measure of angle C is;
![\measuredangle C=35.7^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/bnlj1v26l1dqw796z731jg7gfxzvj0gbwp.png)