Given
The equation,
![x^4+6x^2=-8](https://img.qammunity.org/2023/formulas/mathematics/college/zs9ncpgddh8aagmoh760apruwhn4m69adt.png)
To find:
The roots of the given equation.
Step-by-step explanation:
It is given that,
![x^4+6x^2=-8](https://img.qammunity.org/2023/formulas/mathematics/college/zs9ncpgddh8aagmoh760apruwhn4m69adt.png)
That implies,
![\begin{gathered} x^4+6x^2=-8 \\ x^4+6x^2+8=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3023tumc815u0i23nuo23gamijxrxzbqg8.png)
Put x²=y.
Then,
![\begin{gathered} y^2+6y+8=0 \\ y=(-6\pm√(36-32))/(2) \\ y=(-6\pm√(4))/(2) \\ y=(-6\pm2)/(2) \\ y=(-6+2)/(2),\text{ }y=(-6-2)/(2) \\ y=(-4)/(2),\text{ }y=(-8)/(2) \\ y=-2,\text{ }y=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qgct07ha4dt9z37xy2fab2yzdtkz2osh4l.png)
Therefore,x
![\begin{gathered} x^2=-2,\text{ }x^2=-4 \\ x=\pm√(-2),\text{ }x=\pm√(-4) \\ x=\pm i√(2),\text{ }x=\pm2i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xrxuav5eap96zj55t7ej26iff50w4ffk2u.png)
Hence, the two imaginary ssolutions with rational coefficients are ±2i, and the two imaginary solutions with irrational coefficients are ±i√(2).