227k views
2 votes
14.02 i -27.14 j to polar form

User Urjit
by
3.4k points

1 Answer

1 vote

the expression is:


14.02i-27.14j

So we can writte it like a coordinate:


(14.02,27.14)

Now we can transform that to polar form:


\begin{gathered} r=\sqrt[]{x^2+y^2} \\ \tan (\theta)=(y)/(x) \end{gathered}

So for r:


\begin{gathered} r=\sqrt[]{14.02^2+27.14^2} \\ r=\sqrt[]{196.5+736.6} \\ r\approx\sqrt[]{933} \\ r=30.5 \end{gathered}

and for theta


\begin{gathered} \theta=\tan ^(-1)((27.14)/(14.02)) \\ \theta=\tan ^(-1)(1.9) \\ \theta=62.2ยบ \end{gathered}

User Shamster
by
3.6k points