Let's put more details in the figure to better understand the problem:
Given:
A = Side of the cube = 4 cm
B = Diagonal of the base = √(4² + 4²) = √(16 + 16) = √(32) = 4√2 cm
Connecting sides A, B and C, it appears to be a right triangle. Thus, to find C, we will be using the Pythagorean Theorem.
![\text{ C}^2=A^2+B^2](https://img.qammunity.org/2023/formulas/mathematics/college/f159uz5xhvoy111w8veu5pnxyaq3nbfdv9.png)
We get,
![\text{ C}^2=A^2+B^2\text{ }\rightarrow\text{ C = }\sqrt[]{A^2+B^2}](https://img.qammunity.org/2023/formulas/mathematics/college/phar3nramnwxcpy36ji748qztiyom8rxn1.png)
![\text{C = }\sqrt[]{(4)^2+(4\sqrt[]{2})^2}](https://img.qammunity.org/2023/formulas/mathematics/college/c18a64f2hq7eivrqw38cqr2wumpgie0w23.png)
![\text{ = }\sqrt[]{16\text{ + 16(2)}}\text{ }\rightarrow\text{ }\sqrt[]{16\text{ + 32}}](https://img.qammunity.org/2023/formulas/mathematics/college/yavle9868jbfyike6qujy8vcubx88si9ui.png)
![\text{ = }\sqrt[]{48}](https://img.qammunity.org/2023/formulas/mathematics/college/1uqhaelg48sm4a06yzwicmtwb7gz7ve9pn.png)
![=\text{ }\sqrt[]{\text{ 16 x 3}}\text{ = }\sqrt[]{16}\text{ x }\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/g7kc4g7woe9sutwl220sv6fdcenab2zmew.png)
![\text{ C = 4}\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/n84p0hcww2ebekc60mzxg6hnpxayt68auu.png)
Therefore, the measure of the red line segment is 4√3