The general equation of parabole with vertex (h,k) is,
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
Simplify the equation to obtain in standard form equation.
![\begin{gathered} y=-5x^2+x+4 \\ =-5(x^2-(x)/(5))+4 \\ =-5(x^2-2\cdot(1)/(10)\cdot x+(1)/(100)-(1)/(100))+4 \\ =-5(x-(1)/(10))^2+(1)/(20)+4 \\ =-5(x-(1)/(10))^2+(81)/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pzltmzi9909hyx3x42hxyxesrwvgql49iz.png)
On compare equation, the vertex is (1/10,81/20).
The axis of symmetry for the standard function is x = h. So axis of symmetry for the function is,
![x=(1)/(10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/joh05pjz6dyw2iugah7g1dn2dfsgr29t9h.png)
Answer:
Vertex: (1/10,81/20) or (0.1,4.05)
Axis of symmetry: x = 1/10 or x = 0.1