The given expression :
![11^{(19)/(4)}\cdot\sqrt[a]{11^b}=11^{(9)/(4)}\cdot\sqrt[]{11^3}](https://img.qammunity.org/2023/formulas/mathematics/college/9eg0q2nf7yms5xklgmmxy1k4hoze5uohkz.png)
The exponents in the form of root can be express as :
![x^{(n)/(m)}=\sqrt[m]{x^n}](https://img.qammunity.org/2023/formulas/mathematics/college/532rzr7ye0ysq4wdahkmnnbovw5jxjfnxx.png)
So, the given expression simplify as :
![\begin{gathered} 11^{(19)/(4)}\cdot\sqrt[a]{11^b}=11^{(9)/(4)}\cdot\sqrt[]{11^3} \\ 11^{(19)/(4)}\cdot11^{(b)/(a)}=11^{(9)/(4)}\cdot11^{(3)/(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/isukcxy6yfjebxrvvvfmwc665u8pp7blg6.png)
Since the base of the exponents are same and the bases are multiply so, the exponents will sum up

Now, the bases of exponents on both side are equal so, the exponents will equate together

Answer : Quotient of b and a is ( -1 ).