Answer
Numerator:
![5x-1](https://img.qammunity.org/2023/formulas/mathematics/college/cehyhrfr88fslpcl0fgguv3c705f6xey97.png)
Denominator:
![(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/d0wql51sqw3r661px9agtf0qc0djq4puup.png)
Step-by-step explanation
Problem Statement
The question asks us to simplify the complex rational expression given below:
![(\mleft((3)/(x+1)+(2)/(x-1)\mright))/(((x-1))/(x+1))](https://img.qammunity.org/2023/formulas/mathematics/college/uqfkradxt1qu7qp565s9j624jbwa3lwxyu.png)
Solution
To solve the question, we will proceed to simplify the Numerator and Denominator separately.
Numerator:
![\begin{gathered} (3)/(x+1)+(2)/(x-1) \\ \text{Multiply the numerator and denominator by (x+1)(x-1)} \\ \mleft((3)/(x+1)+(2)/(x-1)\mright)*((x+1)(x-1))/((x+1)(x-1)) \\ \text{Expand the bracket} \\ (3)/((x+1))*((x+1)(x-1))/((x+1)(x-1))+(2)/((x-1))*((x+1)(x-1))/((x+1)(x-1)) \\ \\ (3(x-1))/((x+1)(x-1))+(2(x+1))/((x+1)(x-1)) \\ \\ =(3(x-1)+2(x+1))/((x+1)(x-1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p80twfowcbulmev1f3jxoovmid83o7rvby.png)
Denominator:
![\begin{gathered} (1)/(((x-1))/(x+1)) \\ we\text{ can re-write this expression as:} \\ (x+1)/(x-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iabdr25chlj32t6365si9h536d9qapskqb.png)
Now, let us combine the Numerator and Denominator as follows:
![\begin{gathered} (((3)/(x+1)+(2)/(x-1)))/(((x-1))/(x+1))=\mleft((3)/(x+1)+(2)/(x-1)\mright)*(1)/(((x-1))/(x+1)) \\ \\ =\mleft((3)/(x+1)+(2)/(x-1)\mright)*(x+1)/(x-1) \\ \\ =(3(x-1)+2(x+1))/((x+1)(x-1))*((x+1))/((x-1)) \\ \\ (x+1)\text{ crosses out.} \\ \\ =(3(x-1)+2(x+1))/((x-1))*(1)/((x-1)) \\ \\ =(3(x-1)+2(x+1))/((x-1)^2)=(3x-3+2x+2)/((x-1)^2) \\ \\ =(5x-1)/((x-1)^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5a4dk599aal295bhepcclgnwo2y5hm60gb.png)
Final Answer
Numerator:
![5x-1](https://img.qammunity.org/2023/formulas/mathematics/college/cehyhrfr88fslpcl0fgguv3c705f6xey97.png)
Denominator:
![(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/d0wql51sqw3r661px9agtf0qc0djq4puup.png)