Given an equation below and evaluate the process:
![5(3x+4)=-10](https://img.qammunity.org/2023/formulas/mathematics/college/84n9qz1rj7e0jfd4dprddvtmw19u608uws.png)
Step 1: Multiplication property of equality inorder to open the bracket
![\begin{gathered} 5(3x+4)=-10 \\ 15x+20=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/znq0ygw316ojm4z9hgm6rsces9l14qreb5.png)
Step 2: Subtraction property of equality:
![\begin{gathered} 15x+20=-10 \\ \text{subtract both side by 20} \\ 15x+20-20=-10-20 \\ 15x=-30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5b1uy93r95elha8az3ptqs0f6weoma09ic.png)
Step 3: Division property of equality:
![\begin{gathered} 15x=-30 \\ \text{divide both side by 15} \\ (15x)/(15)=-(30)/(15) \\ x=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qf36ic3vrp98kk1loavcdjd6ijz01euq7c.png)
Step 4: Simplfying:
![x=-2](https://img.qammunity.org/2023/formulas/mathematics/college/hgapxsmy5hypkh6t7zmgcc8cu0ivm02dxk.png)
Therefore the correct value of x = -2