Step-by-step explanation
Since we have the slope m=3/4 and the point (8,-4) we need to apply the slope intercept form of the line:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Where m=-3/4 and (x,y)=(8,-4)
Plugging in the terms into the equation:
![-4=\left(-(3)/(4)\right)*8+b](https://img.qammunity.org/2023/formulas/mathematics/college/qrgh8cn6blxg1yxzixl87heung73bycxk1.png)
Multiplying numbers:
![-4=-6+b](https://img.qammunity.org/2023/formulas/mathematics/college/qxsxq486pdickpefrv8jrs51f03523t3mz.png)
Adding +6 to both sides:
![-4+6=b](https://img.qammunity.org/2023/formulas/mathematics/college/ebh30jwh5p2elomvvvs1rurc7azj6anvaw.png)
Subtracting numbers:
![2=b](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2jq02s2uzrlbzq443nyw9h224u35sqkxa.png)
Plugging in b=2 into the equation:
![y=-(3)/(4)x+2\text{ \lbrack EQUATION OF THE LINE\rbrack}](https://img.qammunity.org/2023/formulas/mathematics/college/s9y8emam2f6nu4nuej4hy2yh9zumbn7zt7.png)