Accoding to the distributive property,
![(a+b)\ast(c+d)=a\ast(c+d)+b\ast(c+d)](https://img.qammunity.org/2023/formulas/mathematics/college/ynklxcm4a254616xh1g3v6ct2fw1bsxd2d.png)
a.
Apply the property to the given expression,
![\begin{gathered} (x+2)(x+9) \\ =x\mleft(x+9\mright)+2\mleft(x+9\mright) \\ =x^2+9x+2x+18 \\ =x^2+11x+18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dtmoxle7tfk3jsc8lvl5p6fqxjgetejaew.png)
Thus, the given equivalent expression is,
![x^2+11x+18](https://img.qammunity.org/2023/formulas/mathematics/high-school/asgy8lkrfr70rn3wa2ocgal0wt6sz3ca5x.png)
b.
Apply the property to the given expression,
![\begin{gathered} (x+4)(2x-1) \\ =x(2x-1)+2(2x-1) \\ =2x^2-x+4x-2 \\ =2x^2+3x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y0n4au0yr3wibn12gmxskyswwbiqcgmw2x.png)
Thus, the given equivalent expression is,
![2x^2+3x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/sd6x9d4fh4a6c17mqx9pgzzpbqqvme8kx2.png)
c.
To apply the Distributive Property, we need a 3rd term. But here are only two terms in the expression.
So the only other possible way to write the equation using Distributive property is given as,
![\begin{gathered} (x-5) \\ =1(x-5) \\ =1(x)-1(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nxgj1ytm5rg3noziyv0wujrc4ic5hzwshs.png)
Thus, the required equivalent expression is ,
![1(x)-1(5)](https://img.qammunity.org/2023/formulas/mathematics/college/me8uztp26r7v4rl6o49uiy6sfsrwcgbazr.png)