Given the inequality
![(x-3)/(2)<(17)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/eu3heoqcxhg784gleu7s51h6dic9tj3zrs.png)
To solve the inequality algebraically
Crossmultiply to eliminate the denominators
![\begin{gathered} (x-3)/(2)<(17)/(3) \\ 3(x-3)<2*17 \\ 3x-9<34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkg6k1irg3bgzmxh8dyrt848syku0jojy9.png)
Collect like terms
![\begin{gathered} 3x-9<34 \\ 3x<34+9 \\ 3x<43 \\ \text{Divide both sides by 3} \\ (3x)/(3)<(43)/(3) \\ x<(43)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rrmo3xh7jq5cuuqojw3ydg81tl491ysls2.png)
The graph of the given inequality is shown below
Hence, the interval notation of the given inequality is
![(-\infty,(43)/(3))](https://img.qammunity.org/2023/formulas/mathematics/college/55fa2ies8t8l10unymy8zld477j350gbwe.png)
The number line of solution to the given inequality is shown below i.e (x < 43/3)