Solution
We can assume a normal distribution since the problem states that the samples came from this distributoon
And for this case we can use the following formula:
![\operatorname{mean}\pm Z_{(\alpha)/(2)}\cdot\frac{\sigma}{\sqrt[]{n}}]()
For this case mean = 40 , sigma = 7, n=13 and z_alpha/2 represent a quantile from the normal standard distribution, for the confidence levels 90%, 95% and 99% the z values are: 1.64, 1.96 and 2.58 and replacing we have:
90% confidence
![40\pm1.64\cdot\frac{7}{\sqrt[]{13}}=(36.816;43.184)](https://img.qammunity.org/2023/formulas/mathematics/college/18s4d7vbzv4qjdzo7vzxx7x3toioge1wt1.png)
95% confidence
![40\pm1.96\cdot\frac{7}{\sqrt[]{13}}=(36.195;43.805)](https://img.qammunity.org/2023/formulas/mathematics/college/h9z12alksmmjmtfrahihss82910bcn30fi.png)
99% confidence
![40\pm2.58\cdot\frac{7}{\sqrt[]{13}}=(34.991;45.009)](https://img.qammunity.org/2023/formulas/mathematics/college/zeht9poztrfstw271l3lnfeyklpi0d3yk9.png)