Considering the figure:
The horizontal lines are parallel lines crossed by a transversal line, the angles with measure 3xº and 60º are corresponding angles, which means that they are congruent, then:
![3xº=60º](https://img.qammunity.org/2023/formulas/mathematics/college/rzgx5ynerq40isktlikz7thj9ebltrnlby.png)
From this expression, you can determine the value of x, simply divide both sides by 3:
![\begin{gathered} (3xº)/(3)=(60º)/(3) \\ x=20º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pqdptl658v1u0zshp298zu2p66zzz5skxc.png)
The value of x is 20º
Next, to determine the value of y, you have to work using the quadrilateral on the bottom:
Before you can determine the value of y, you have to determine the measure of the fourth angle of the quadrilateral, which I named "z" for explanation purposes.
The angle with measure 60º and z are supplementary angles, this means that their measures add up to 180º
![60º+z=180º](https://img.qammunity.org/2023/formulas/mathematics/college/wxft2vdvha1uf8h8lqi1bfjgj4zci4z5yt.png)
From this, you can determine the value of z:
![\begin{gathered} z=180º-60º \\ z=120º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lqfj15uayu1wn8kyxjxvjj8caalb3sepj6.png)
You know that the sum of the inner angles of a quadrilateral is equal to 360º, for the quadrilateral marked with red, you can express this as follows:
![360º=120º+60º+135º+(5y-5)º](https://img.qammunity.org/2023/formulas/mathematics/college/mqbe2npzxc086k9z7bwaro2f6gldt7gydx.png)
Now we can determine the value of y:
-Simplify all like terms together:
![\begin{gathered} 360º=120º+60º+135º-5º+5y \\ 360º=310º+5y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7981dueqnmyhc2q10g6qvy6609cyk3slc1.png)
-Subtract 310º to both sides of the equal sign:
![\begin{gathered} 360º-310º=310º-310º+5y \\ 50º=5y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mjolmod08taen6vjhwxhei23t44jc60wq9.png)
-Divide both sides by 5
![\begin{gathered} (50º)/(5)=(5y)/(5) \\ 10º=y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pxmaa8twzwdwxx28xcn66wpo0hzy714r97.png)
The value of y is 10º
You can determine the measure of the angle as follows:
![\begin{gathered} (5y-5)º \\ (5\cdot10-5)º \\ (50-5)º \\ 45º \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c4iva0hgra8u5g2dk34256d2zd25che9l6.png)