181k views
5 votes
2Select the correct answer.What are the roots of this equation?x2 - 2x + 3 = 0OA. -2 + 12OB. 1 + 12OC. -1 2OD. 2 + V2Daca

User Lucasvw
by
4.7k points

1 Answer

3 votes

Given the equation:


x^2-2x+3=0

Let's find the roots of the equation.

To find the roots of the equation, let's solve for x using the quadratic formula:


x=(-b\pm√(b^2-4ac))/(4a)

Use the standard equation to find the values of a, b, and c:


\begin{gathered} ax^2+bx+c=0 \\ \\ x^2-2x+3=0 \end{gathered}

a = 1

b = -2

c = 3

Input the values into the quadratic equation and solve for x:


\begin{gathered} x=(-(-2)\pm√(-2^2-4(1)(3)))/(2(1)) \\ \\ x=(2\pm√(4-12))/(2) \\ \\ x=(2\pm√(-8))/(2) \end{gathered}

Solving further:


\begin{gathered} x=(2\pm√((8)(-1)))/(2) \\ \\ \text{ Where:} \\ √(-1)=i \\ \\ x=(2\pm i√(8))/(2) \\ \\ x=(2\pm i√((2)(4)))/(2) \\ \\ x=(2\pm i√((2)(2)^2))/(2) \end{gathered}

Therefore, we have:


\begin{gathered} x=(2\pm2i√(2))/(2) \\ \\ \text{ Divide all terms by 2:} \\ x=(2)/(2)\pm(2i√(2))/(2) \\ \\ x=1\pm i√(2) \end{gathered}

The roots of the equation:


x=1\pm i√(2)

ANSWER:


1\pm i√(2)

User Benni
by
4.5k points