Given a standard normal distribution, let's solve for the following:
• (i) P(Z < h) = 0.4840
To find the value of h here, apply the standardized Normal deviate using the NORMSINV table.
We have:
NORMSINV(0.4840) = -0.04
Hence, the value of h is -0.04
P(Z < 0.04) = 0.4840
• ii). P(Z > h) = 0.3707
We have:
P(Z < h ) = 1 - 0.3707
P(Z < h) = 0.6293
Now, apply the NORMSINV function:
NORMSINV(0.6293) = 0.33
The value of h here is 0.33
P(Z < 0.33) = 0.6293
• iii). P(h < Z < - 1.4) = 0.0428
Here, we have:
P(h < Z < - 1.4) = P(Z < -1.4) - P(Z < h) = 0.0428
Use the NORMSDIST function to find P(Z < -1.4):
NORMSDIST(-1.4) = 0.0808
Thus, we have:
P(Z < -1.4) - P(Z < h) = 0.0808 - P(Z < h) = 0.0428
P(Z < h) = 0.0808 - 0.0428
P(Z < h) = 0.038
Apply the NORMSINV function to find h:
NORMSINV(0.038) = -1.78
Thus, we have:
P(-1.78 < Z < -1.4) = 0.0428
h = -1.78
ANSWER:
i). -0.04
ii). 0.03
iii). -1.78