First, let us solve all the angles.
We are told that the triangle is right; therefore the angle C is 90°. And for angle B, we know that the sum of angles in a triangle is 180°; therefore,
![31^o+B+90^o=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/zwu0afsq4igzsyqg1l2w42emdgb6uglpiw.png)
Subtracting 90° from both sides gives
![31^o+B=90^o](https://img.qammunity.org/2023/formulas/mathematics/college/fjuf991kyyon6hxfw73p6vw8cd98e54z75.png)
Subtracting 31° from both sides gives
![B=59^o](https://img.qammunity.org/2023/formulas/mathematics/college/t57kwu7z2bthhiij1v7m44haln4gdxipg1.png)
Now that we have angles in hand, we now solve for the sides.
Using the cosine ratio we know that
![\cos 31^o=(59.4)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/k13hh8f9t828jj8g1ttl1kcc3vz8q2ny1q.png)
Multiplying both sides by c gives
![c\cdot\cos 31^o=59.4](https://img.qammunity.org/2023/formulas/mathematics/college/bujfml0qzneqowqdcgjl5rqwh3y4zfmtwi.png)
dividing both sides by cos 31 gives
![c=(59.4)/(\cos 31^o)](https://img.qammunity.org/2023/formulas/mathematics/college/d3lpfjmody5721cpxdrflhgh5zte59jeb6.png)
![\therefore c=64.9](https://img.qammunity.org/2023/formulas/mathematics/college/jvkj7zl4zr8f3lhiaw0yb01w6dsteo2fvc.png)
Now we find the length a, and for that we use the tangent.
![\tan 31^o=(a)/(59.4)](https://img.qammunity.org/2023/formulas/mathematics/college/2xvxy7en274nr0yqdzjz89pcjc2ri86gdf.png)
solving for a gives
![a=35.7](https://img.qammunity.org/2023/formulas/mathematics/college/vq0f6cyojppl7ipqiw6iyssgkc4g5j32ac.png)
Hence,
A = 31°
B = 59°
C = 90°
a = 35.7
b = 59.4
c = 64.9