Given:
The mass m1 = 3 kg whose coordinates are (1,2)
The mass m2 = 1 kg whose coordinates are (5,3)
The mass m3= 4 kg whose coordinates are (7,1)
To find the coordinates of the center of mass.
Step-by-step explanation:
The x-coordinate of the center of mass can be calculated as
![\begin{gathered} x\text{ coordinate = }(m1x1+m2x2+m3x3)/(m1+m2+m3) \\ =((3*1)+(1*5)+(4*7))/(3+1+4) \\ =4.5\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sy5s46wnmxgzv1q63w6k02g0u23v51wsv9.png)
![\begin{gathered} x\text{ coordinate = }(m1x1+m2x2+m3x3)/(m1+m2+m3) \\ =((3*1)+(1*5)+(4*7))/(3+1+4) \\ =4.5\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sy5s46wnmxgzv1q63w6k02g0u23v51wsv9.png)
The y-coordinate of the center of mass can be calculated as
![\begin{gathered} \text{y-coordinate = }(m1y1+m2y2+m3y3)/(m1+m2+m3) \\ =((3*2)+(1*3)+(4*1))/(3+1+4) \\ =1.625 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/e826t5lo1w70kwsey148y39us493zmba90.png)
Thus, the coordinates of the center of mass is (4.5,1.625)