Step-by-step explanation
In the question, we are given that
![\begin{gathered} \mu=21,604 \\ \sigma=$ 727 $ \\ n=193 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ga41pu0w9x9e8beopny0ih5ozbdnzxzyi.png)
First, we will get the standard deviation of the sample mean as
![\sigma_x=(\sigma)/(√(n))=(727)/(√(193))=52.3306](https://img.qammunity.org/2023/formulas/mathematics/college/azw9545iy01r6wyg0xnqpcjroqcziwldhu.png)
Then, we can find the probability that the sample mean will be less than $21,635 for a sample of 193 persons
![\begin{gathered} P(\bar{X}<21635)=P(z<\frac{\bar{X}-\mu}{\sigma_x})=P(z<(21635-21604)/(52.3306)) \\ =P(z<0.59238) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4t1oaifr64co2hhq79jz5f6voec6y0zr1l.png)
Therefore, using the z score calculator
![P(z<0.59238)=0.7232](https://img.qammunity.org/2023/formulas/mathematics/college/zndqdl51h3kcqwe05z2fwwwtf81g29uebq.png)
Answer: 0.7232