The equation of a parabola in vertex form, is:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
Where (h,k) are the coordinates of the vertex.
From the given graph, notice that the coordinates of the vertex are:
![(5,6)](https://img.qammunity.org/2023/formulas/mathematics/college/kkesje8cnn9c9hxo3gd582ae2xdgas4b5o.png)
The roots are the values of x where the graph crosses the x-axis. In this case, the graph crosses the x-axis at the points (4,0) and (6,0). Then, the roots are:
![\begin{gathered} x_1=4 \\ x_2=6_{}_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bkgf5can99hxcdgugdlykwuxoirlcesa3s.png)
Substitute the values of the vertex into the equation of the parabola in vertex form:
![y=a(x-5)^2+6](https://img.qammunity.org/2023/formulas/mathematics/college/u67n78ht2cpdpfvd3k42ln53c9phi580s8.png)
To find the value of a, substitute (x,y)=(4,0):
![\begin{gathered} 0=a(4-5)^2+6 \\ \Rightarrow0=a(-1)^2+6 \\ \Rightarrow0=a+6 \\ \Rightarrow-6=a \\ \Rightarrow a=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/311hlyi0f4u0xlfk2j8z5dfdgansuxjjpw.png)
Therefore, the equation of the parabola is:
![y=-6(x-5)^2+6](https://img.qammunity.org/2023/formulas/mathematics/college/wixu1cp0hkmlw0ga38qyoqxrpec0p7v5y7.png)