Given the right angle triangle ABC
As shown, there is a line segment perpendicular to the base AC that produces another two right-angle triangles
From the similarity of the triangle:
![\begin{gathered} (x)/(7)=(7)/(13) \\ \\ x=(7\cdot7)/(13)=3.76923 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ji5fzsaw6m2keo24lnsllr39nayqvxnqh.png)
Rounding to the nearest tenths
So, the answer will be:
![x=3.8](https://img.qammunity.org/2023/formulas/mathematics/high-school/2uu3s4k18gquvuqadh3nab2bo4mwrdjnso.png)
Now, we will find the length of AC
as shown:
![\begin{gathered} AC=x+13=3.8+13 \\ \\ AC=16.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sfrza39y9784grm1lxmpyqvcopukq3su4d.png)