1.7k views
2 votes
We consider f a function defined on R by f(x) = sin(√x), (x >= 0).1) Determine the first derivative of f, f'(x).2) Establish the relation 4xf'(x)² + f(x)² = 1

We consider f a function defined on R by f(x) = sin(√x), (x >= 0).1) Determine-example-1
User Bcackerman
by
3.7k points

1 Answer

3 votes

First, let's calculate the derivative:


f^(\prime)(x)=(d)/(dx)(\sin \sqrt[]{x})

Here we have a compounded function, so we need to apply the chain rule:


f^(\prime)(x)=\cos \sqrt[]{x}\cdot(d)/(dx)(\sqrt[]{x})

Finally, we obtain:


f^(\prime)(x)=\cos \sqrt[]{x}\cdot(\frac{-1}{2\cdot\sqrt[]{x}})
f^(\prime)(x)=-\frac{\cos \sqrt[]{x}}{2\cdot\sqrt[]{x}}

Now, let's establish the relationship:


4x\cdot f^(\prime)(x)^2+f(x)^2=1

replacing the expressions of the functions:


4x\cdot(\frac{\cos\sqrt[]{x}}{2\cdot\sqrt[]{x}})^2+\sin ^2\sqrt[]{x}=1
4x\cdot\frac{\cos^2\sqrt[]{x}}{2^2\cdot\sqrt[]{x}^2}+\sin ^2\sqrt[]{x}=1
4x\cdot\frac{\cos^2\sqrt[]{x}}{4x}+\sin ^2\sqrt[]{x}=1

We can cancel the terms 4x in the first term of the expression:


\cos ^2\sqrt[]{x}+\sin ^2\sqrt[]{x}=1

From the Pythagorean identity, we know that the sum of cosine squared, plus sine squared of any angle is always equal to 1:


\sin ^2\theta+\cos ^2\theta=1

Then, we confirm that the relationship established in 2) is correct:


\begin{gathered} \cos ^2\sqrt[]{x}+\sin ^2\sqrt[]{x}=1 \\ \\ 1=1 \end{gathered}

User Pihhan
by
3.2k points