From the given figure
Triangle ABC is the right angle triangle where C is the 90 degree
1)
Here we have θ=28, we need to calculate the Side of AB
Since AB is the hypotenuse of the triangle ABC and the side BC = 3ft, which is the base of the triangle ABC
Thus, apply the trignometric ratio of Cos
![\begin{gathered} \text{Cos}\theta=(Base)/(Hypotenuse) \\ \text{Cos (28)=}(BC)/(AB) \\ \text{Cos (28)=}(3)/(AB) \\ AB=(3)/(Cos(28)) \\ AB=(3)/(0.882) \\ AB=3.401\text{ f}eet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hvjkv8ili2n8u5gnbs8p7yca0unwxlo5qh.png)
Answer : AB = 3.041 feet
2)
Here we have the string is stretched upto 5.2 feet i.e AB = 5.2 feet
We need to find the value of the angle,
thus again apply the trignometric ratio of Cos
![\begin{gathered} \text{Cos}\theta=(Base)/(Hypotenuse) \\ \text{Cos (}\theta\text{)=}(BC)/(AB) \\ \text{Cos (}\theta\text{)=}(3)/(5.2) \\ \text{Cos(}\theta)=0.576 \\ \theta=\cos ^(-1)(0.576) \\ \theta=54.83^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wfc5fx9jjsjo99b8ovqvu5spcqbzmjknkl.png)
So, the angle θ = 54.83
Answer : θ = 54.83
3)
when the θ=15 then the AB will be :
![\begin{gathered} \text{Cos}\theta=(Base)/(Hypotenuse) \\ \text{Cos (15)=}(BC)/(AB) \\ \text{Cos (15)=}(3)/(AB) \\ AB=\frac{3}{\text{Cos}(15)} \\ AB=(3)/(0.759) \\ AB=3.952 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z0wkbeqd3lmg03s0nd1luetv444zwiehfi.png)
thus, at angle 15 the side AB = 3.1059 feet
Now, at an angle 30 the AB will be :
![\begin{gathered} \text{Cos}\theta=(Base)/(Hypotenuse) \\ \text{Cos (30)=}(BC)/(AB) \\ \text{Cos (30)=}(3)/(AB) \\ AB=\frac{3}{\text{Cos}(30)} \\ AB=(3)/(0.866) \\ AB=3.464\text{ f}eet \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nyac8no1wa92hbpddi3zuyhrxknvv539nv.png)
So, the collar will slide from point A to B when the angle changes from 15 to 30 is the difference between the side AB at 15 to AB at 30
Difference = 3.952 -3.464
Difference = 0.488 feet
Answer : 0.488 feet