The height (h) of the cylinder is 42 meters.
Given that the diameter (d) of the cylinder is one third of its height,
![\begin{gathered} d=(1)/(3)h \\ d=(1)/(3)*42 \\ d=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g0dcbv4nfwp5hg2c52ermie8abv9qq31ga.png)
So the diameter of the cylinder is 14 meters.
Consider that the total surface area of a cylinder is given by,
![A=\pi d((d)/(2)+h)](https://img.qammunity.org/2023/formulas/mathematics/college/iqybho11p6ac6gg1h7stxmmkpbfjqcz8wr.png)
Substitute the values,
![\begin{gathered} A=\pi(14)((14)/(2)+42) \\ A=\pi(14)(49) \\ A=686\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/atsv2kjyn5i4okv306xgsygaiap2q48ty0.png)
Thus, option B is the correct choice.