Picking any two points on the line on the Right Hand side of the graph, we have the following coordinates:
![(6,0)\text{ and (8,3)}](https://img.qammunity.org/2023/formulas/mathematics/college/4smlm583u620eub43bw8zpe3w6fzolv29e.png)
Finding the equation of the line with the coordinates above, we have::
![\begin{gathered} (y_2-y_1)/(x_2-x_1)=(y-y_1)/(x-x_1) \\ (3-0)/(8-6)=(y-0)/(x-6) \\ (3)/(2)=(y)/(x-6) \\ 2y=3(x-6) \\ 2y=3x-18 \\ y=(3x)/(2)-(18)/(2) \\ y=1.5x-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/42slp3eqlgqmj1m4ml9r04axit8wruxhv8.png)
Picking any two points on the line on the left-hand side of the graph, we have the following coordinates:
![(-6,4)\text{ and (-4,3)}](https://img.qammunity.org/2023/formulas/mathematics/college/ic1p9clnfhj6lo9f4j7fr1ikif4q3mijrl.png)
Finding the equation of the line with the coordinates above, we have::
![\begin{gathered} (y_2-y_1)/(x_2-x_1)=(y-y_1)/(x-x_1) \\ (3-0)/(8-6)=(y-0)/(x-6) \\ (3)/(2)=(y)/(x-6) \\ 2y=3(x-6) \\ 2y=3x-18 \\ y=(3x)/(2)-(18)/(2) \\ y=1.5x-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/42slp3eqlgqmj1m4ml9r04axit8wruxhv8.png)
Hence, the piecewise function of the function; Y= 1.5x - 9 is