We can solve this problem by using the law of cosines:
![c^2=a^2+b^2-2ab\cos C](https://img.qammunity.org/2023/formulas/mathematics/high-school/7xuakf37j2toz2151r22q5nwlfcp4icl35.png)
The given information is:
C=88
a=12
b=22
Then:
![\begin{gathered} c^2=12^2+22^2-2(12)(22)\cos 88 \\ c^2=144+484-528\cdot0.035 \\ c^2=144+484-18.43 \\ c^2=609.57 \\ c=\sqrt[]{609.57} \\ c=24.7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t1kizi0wwgr52w0vwiwsy7ixg2ue0j6gi3.png)
Now, we can use the law of sines to find the other angles:
![(\sin A)/(a)=(\sin C)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/iiv9c3wulvhdllm8elt6212djghg05vpv2.png)
Replace the values and solve for A:
![\begin{gathered} \sin A=(a\sin C)/(c) \\ \sin A=(12\cdot\sin 88)/(24.7) \\ \sin A=(12)/(24.7) \\ \sin A=\text{0}.486 \\ A=\sin ^(-1)(0.486) \\ A=29.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tcbwi8m7jq5e0f79pfjnyprkhwdwp2pk56.png)
And the sum of the interior angles of a triangle is 180°, then:
![\begin{gathered} A+B+C=180\degree \\ 29.1\degree+B+88\degree=180\degree \\ B=180\degree-29.1\degree-88\degree \\ B=62.9\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/choq0nxdhqr2iw6y2pgxrf8qztmhqmpp84.png)