We have to find the parameters of the model:
![N(t)=A\sin[B(t+C)]+D](https://img.qammunity.org/2023/formulas/mathematics/college/6s724oghfs3xbb0dijpi25oxarf4iqevv0.png)
where N is the number of sunspots and t is the time in years.
(1) The period is 11 years.
This affects the horizontal stretch of the function.
This can be related to the parameter B as:
![\begin{gathered} T=11 \\ (2\pi)/(B)=11 \\ B=(2\pi)/(11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/283oxo4ozna69e7lphhxp6e32k5tybv6o6.png)
(2) The maximum number of spots is 300 and the minimum is 0.
This is related to the the parameters A and D, which control the vertical behaviour of the function.
The maximum number of spots happens when the sine function has a value of 1, so we can write:
![\begin{gathered} N_(max)=300 \\ A(1)+D=300 \\ A+D=300 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e8x1b8l8u2tsy2ujv7ejfruontt3uogrrk.png)
The minimum number of spots happens when the sine function has a value of -1.
We then can write:
![\begin{gathered} N_(min)=0 \\ A(-1)+D=0 \\ -A+D=0 \\ A=D \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9krlfx3iwqdgjvnvhwo05xrpktpde4u48c.png)
We then can find A and D as:
![\begin{gathered} A+D=300 \\ A+A=300 \\ 2A=300 \\ A=(300)/(2) \\ A=150 \\ D=A=150 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uw4wmn9y0sxx097z8sefl5npn48fd9bbt2.png)
(3) The remaining parameter, C, will allow us to shift the phase the of the function.
We know that N(0) = 0.
This happens when the sine function is equal to -1.
Then, we can write:
![\begin{gathered} \sin[B(t+C)]=-1 \\ \sin[(2\pi)/(11)(0+C)]=-1 \\ (2\pi)/(11)(C)=(3)/(2)\pi \\ C=(11)/(2)\cdot(3)/(2) \\ C=(33)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dtn3globrb7h2gud83s0fd71893koelo88.png)
We then can write the model as:
![N(t)=150\sin[(2\pi)/(11)(t+(33)/(4))]+150](https://img.qammunity.org/2023/formulas/mathematics/college/u2591ofuvy119vbekw6wzob6pnmgxdl7ec.png)
We can check the accuracy as:
Answer: N(t) = 150*sin(2π/11*(t+33/4))+150
A = 150, B = 2π/11, C = 33/4, D = 150