Solution
For this case we can find the distance
AB= 4
ED= 4
We can use the distance point given by:
![d=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/nkjymhkzx142t3t66rnvx6qo7qj0ya3b8k.png)
Now we need to find the distance AE, we have y2= 2, y1= -3 , x2= -3, x1 = -4 and we got:
![AE=\sqrt[]{(2+3)^2+(-3+4)^2}=\sqrt[]{26}](https://img.qammunity.org/2023/formulas/mathematics/college/6xkvf53uzykr38vkqgo9fpo8iwtlrrz65g.png)
Similarly we can find BC and DC.
For BC we have we have y2= 2, y1= -1 , x2= 1, x1 = -1
And for DC we have y2= -1, y1= -3 , x2= 3, x1 = 0
![BC=\sqrt[]{(2+1)^2+(1+1)^2}=\sqrt[]{13}](https://img.qammunity.org/2023/formulas/mathematics/college/ib4oiz8c0uewjj3xxi4pu7hg4j2aly15wz.png)
![DC=\sqrt[]{(-1+3)^2+(3-0)^2}=\sqrt[]{13}](https://img.qammunity.org/2023/formulas/mathematics/college/il11ewvwpjuvovogjvmz46g7rmt2u84994.png)
Then the perimeter is given by:
![4+4+\sqrt[]{26}+\sqrt[]{13}+\sqrt[]{13}=20.31](https://img.qammunity.org/2023/formulas/mathematics/college/oqm2cqsc30ymn65eu2j6ut8rdgxnpfxtkq.png)