First, let's determine the slope and y-intercept of the line to write the equation.
You can calculate the slope of the line using the formula:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Where
(x₁,y₁) are coordinates of one of the points of the line
(x₂,y₂) are the coordinates of the second point
![\begin{gathered} m=(9-8)/(9-6) \\ m=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t0iu6pd1v02in9it40mkhbcnjm52gylkti.png)
Using the point-slope form you can determine the equation of the line:
Use m=1/3 and (x₁,y₁) as (6,8)
![\begin{gathered} y-y_1=m(x-x_1) \\ y-8=(1)/(3)(x-6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/obdqhsd65bv2jfqeg4qjtwxihovvq0uiic.png)
-distribute the multiplication on the parentheses term
![\begin{gathered} y-8=(1)/(3)\cdot x-(1)/(3)\cdot6 \\ y-8=(1)/(3)x-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/munbuftzzomf0as43v6dz9ara56t9s193p.png)
-add 8 to both sides of it
![\begin{gathered} y-8+8=(1)/(3)x-2+8 \\ y=(1)/(3)x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/po9r1h9509383kl1e7juhnog0d3qg4dmeg.png)
The y-intercept of the line is the constant of the equation b=6
Plot both points and link them to graph the line: