There is a relation between sine and cosine an angle
![sin^2x+cos^2x=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/ksjpjz6wdwu1twdzyd3t2r5ro469sm697c.png)
We will use this rule to solve the question
Since cos(t) = 2/9, then substitute it in the rule above
![\begin{gathered} sin^2\left(t\right)+\left((2)/(9)\right)^2=1 \\ sin^2\left(t\right)+(4)/(81)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6iq984rekzouyt8cogcbrabbjbkj6tj8xc.png)
Subtract 4/81 from each side
![\begin{gathered} sin^2\left(t\right)+(4)/(81)-(4)/(81)=1-(4)/(81) \\ sin^2\left(t\right)=(81)/(81)-(4)/(81) \\ sin^2\left(t\right)=(77)/(81) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o5u5grs9fobhjil1xu9z09eefknrgusjz6.png)
Take a square root for each side
![\begin{gathered} √(sin^2\left(t\right))=\sqrt{(77)/(81)} \\ sin\left(t\right)=(√(77))/(9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7c22jhkyx42b83gdxnxqid4mxe82es32i8.png)
Change it to decimal and round the answer to the nearest hundredth
![sin\left(t\right)=0.97](https://img.qammunity.org/2023/formulas/mathematics/college/jj4tgrdxsgwyjc88ssootfd06wem8jnmhf.png)
The answer is sin(t) = 0.97