The perimeter is the sum of all sides.
The perimeter of the regular pentagon is five times its given expression because it has 5 equal sides.
![P_(penta)=5(2x+9)](https://img.qammunity.org/2023/formulas/mathematics/college/3inzwu9loq08d265vjfdj3la49fxul5fs2.png)
If the square has a side length of 3x, then its perimeter is
![P_(square)=4(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/du938pp3b7x1jlfpuf5yrix9aorci47rqj.png)
Since both figures have the same perimeter, we express the following equation.
![\begin{gathered} P_(penta)=P_(square) \\ 5(2x+9)=4(3x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fygepj33clnodl68a2cc7g70oepe3kq8qm.png)
Now, we solve for x.
![\begin{gathered} 10x+45=12x \\ 45=12x-10x \\ 2x=45 \\ x=(45)/(2) \\ x=22.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pttngjlmxu3m4bmalu9qfoq8ibs1cgmf9c.png)
Therefore, the solution of x is 22.5.