Step-by-step explanation:
The function is given below as
![f(x)=3((5)/(4))^x](https://img.qammunity.org/2023/formulas/mathematics/college/vm8jx7swnm9cdqx99iuurrlc0l0v8xuojc.png)
Concept:
An exponential function is a function in which the variable is an exponent. Exponential functions are written in the form f(x)=ab^x f ( x ) = a. b^ x . Initial Value: The initial value of an exponential function is the result of substituting x=0 into the function.
Hence,
by putting x=0, we will have the initial value be
![\begin{gathered} f(x)=3((5)/(4))^(x) \\ f(0)=3((5)/(4))^0 \\ f(0)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f875tmhmlavvw8vavgts6wsmkus82l9z8s.png)
Hence,
The initial value is
![3](https://img.qammunity.org/2023/formulas/mathematics/college/8chu5ttn7pbn22os4jpmgusjicxxbd8h.png)
Part B:
The genral equation of an exponential equation is given below as
![\begin{gathered} y=ab^x \\ a=constant \\ b=base \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7lsstioo9gf96m1214uyfeo9o3qsrnub9v.png)
By comparing coefficnets,
The base for this function is
![(5)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/28myyekp47ud1nb1hh37fvj5eomaypma2i.png)
Part C:
The domain of the function is given below as
![\begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<strong>Part D:</strong><p><strong>The range of the function is given below as</strong></p>[tex]\begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(0,\:\infty \:\right)\end{bmatrix}]()