Answer:
The minimum value of the function is -8 and the maximum is infinite.
Explanation:
Quadratic function:
In the format:
y = ax² + bx + c
If a is positive, the minimum value is given by:
![y_(MIN)=-(b^2-4ac)/(4a)](https://img.qammunity.org/2023/formulas/mathematics/college/wjazro72ce7zxlpp8chkhk75cmwq9pz68d.png)
In this question:
First we place in the general format.
y = 3(x - 3)² - 4
y = 3(x² - 6x + 9) - 4
y = 3x² - 18x + 27 - 4
y = 3x² - 18x + 23
So a = 3, b = -18, c = 23
The minimum value is:
![y_(MIN)=-((-18)^2-4\ast3\ast23)/(2\ast3)=-(48)/(6)=-8](https://img.qammunity.org/2023/formulas/mathematics/college/kvxm99jixkuxts54euqgktpvfrjbbppff3.png)
The minimum value of the function is -8 and the maximum is infinite.