38) We must find the value of xx from the following equation:
![\sqrt[]{3\cdot xx-8}=5](https://img.qammunity.org/2023/formulas/mathematics/college/44co6thom2an0zuh4wsw57p5j20mu3jap1.png)
In order to find xx we take the square at both sides:
![\begin{gathered} (\sqrt[]{3\cdot xx-8})^2=5^2 \\ 3\cdot xx-8=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zpabw5f0kut1r17qk9yb2s6vqrfvph7c6y.png)
Now we find the value of x:
![\begin{gathered} 3\cdot xx=25+8 \\ 3\cdot xx^{}=33 \\ x^{}x=(33)/(3) \\ xx=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/koyqn27c3jsny48au61c2u3ojobyi4muxs.png)
The answer of 38 is: b. 11
33) Again, we must find the value of the unknown xx from the following equation:
![(3)/(xx)=(5)/(xx-2)](https://img.qammunity.org/2023/formulas/mathematics/college/v0r8pd5n8vtbe3lt6wwtixwhmc2ihfgk3t.png)
We cross multiply by the denominators and we find:
![3(xx-2)=5\cdot xx](https://img.qammunity.org/2023/formulas/mathematics/college/87jbuvr4m3966g53ff70zyf9l49dgwvvda.png)
Now we aplly the distributive law for the multiplication:
![\begin{gathered} 3\cdot xx-6=5\cdot xx \\ 3\cdot xx-5\cdot xx-6=0 \\ -2\cdot xx=6 \\ xx=-(6)/(2) \\ xx=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrqculo92tn0ls83xhx587hno1gqvckjvb.png)
So the answer of 37 is: b. -3