SOLUTION
The model given is
![n=5.12t+139.15](https://img.qammunity.org/2023/formulas/mathematics/college/lwpm6nq9kid22zhe2684sarq5lnwdlszyq.png)
Comparing this with the equation for linear regression
![\begin{gathered} y=bx+a \\ b=\text{slope,a}=\text{ intercept on y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iy0xae5t4l0tqg5jsh834euvenrpzf8xug.png)
Part A;Hence the slope for the given model is
![-5.12](https://img.qammunity.org/2023/formulas/mathematics/college/bdizvamjw5rlrim888op55oynlh54slrff.png)
This means the decrease in the number of refineries as the years increases
Part B:The intercept on n is
![\begin{gathered} 139.15 \\ Or \\ (0,139.15) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yisrryt1yl7v09c2k28ir7371fr7kt1vtq.png)
This means the Initial value of the oil refineries at the beginning of the year.
The number of refineries in 2012 will be
![\begin{gathered} \text{between 2002 to 2012 we have 10 years} \\ \text{then t=10} \\ n=-5.12(10)+139.15 \\ n=-51.2+139.15 \\ n=87.95 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v0qxoltw43a3b0k1e0cjq4efykj4pruk0s.png)
Therefore
the predicted number of refineries is 87.95