Answer:
• A=25.5°
,
• B=116.5°
,
• b=14.5 units
Explanation:
Given triangle ABC where:
• a = 7
,
• c = 10
,
• m∠C=38°
(a)First, we find the measure of angle A using the law of sines.

Substitute the given values:
![\begin{gathered} (\sin A)/(7)=(\sin38\degree)/(10) \\ \sin A=\frac{\sin(38)\operatorname{\degree}}{10}*7 \\ A=\arcsin\left(\frac{\sin(38)\operatorname{\degree}}{10}*7\right) \\ A=25.5\degree \end{gathered}]()
(b)Next, we find the measure of angle B.
The sum of the measures of angles in a triangle is 180 degrees.

The measure of angle B is 116.5 degrees.
(c)Finally, we find the length of b.

Substitute the given values:

The length b is 14.5 units.