7.8k views
3 votes
Determine two unique values of θ in the interval [0,2π), such that sec(θ)=2√3 / 3

User Kingcoyote
by
3.7k points

1 Answer

7 votes

It is given that


\sec (\theta)=\frac{2\sqrt[]{3}}{3}

It can be written as follows:


\sec (\theta)=\frac{2\sqrt[]{3}}{\sqrt[]{3}\sqrt[]{3}}


\sec (\theta)=\frac{2}{\sqrt[]{3}}
\text{Substitute sec}\theta=(1)/(\cos \theta)


(1)/(\cos \theta)=\frac{2}{\sqrt[]{3}}

Reciprocal, we get


\cos \theta=\frac{\sqrt[]{3}}{2}

We know that


\cos 30^o=\frac{\sqrt[]{3}}{2}
\cos (2\pi-\theta)=\cos \theta
\text{Substitute }\theta=30^o,\text{ we get}


\cos (360^o-30^o)=\cos 30^o


\cos 330^o=\cos 30^o=\frac{\sqrt[]{3}}{2}

Hence we get


\sec 330^o=\sec 30^o=\frac{2\sqrt[]{3}}{3}

User Rajesh Paul
by
3.7k points