133k views
1 vote
Determine which of the ordered pairs are a part of the solution set of y + 3 < 2x-1. Oa (2,0) Ob. (0,4) Oc. (2,-2) Od. (0,0)

1 Answer

4 votes

c)(2,-2)

Step-by-step explanation

the easiest way to find if the ordered pair is part of the solution is replacing


y+3<2x-1

Step 1

replace (2,0)

x=2

y=0

then


\begin{gathered} y+3<2x-1 \\ 0+3<2\cdot2-1 \\ 3<4-1 \\ 3<3\rightarrow false,\text{ then (2,0) is not part of the solution} \end{gathered}

Step 2

replace(0,4)

x=0

y=4


\begin{gathered} y+3<2x-1 \\ 4+3<2\cdot0-1 \\ 7<-1\rightarrow false,\text{ then (0,4) is not part of the solution} \end{gathered}

Step 3

replace (2,-2)

x=2

y=-2


\begin{gathered} y+3<2x-1 \\ -2+3<2\cdot2-1 \\ 1<4-1 \\ 1<3\rightarrow true,\text{ then (2,-2) is part of the solution} \end{gathered}

Step 4

replace (0,0)


\begin{gathered} y+3<2x-1 \\ 0+3<2\cdot0-1 \\ 3<-1,\text{ False, then (0,0) is not part of the solution} \end{gathered}

Hence, the answer is (2,-2)

I hope this helps you

User Froginvasion
by
3.8k points