a) 5
b) 10
c) 5
d) 5√3
Step-by-step explanation:
From the left triangle:
hypotenuse = 5√2
opposite = a
adjacent = c
angle = 45°
To get a, we will use sine ratio:
![\begin{gathered} \sin \text{ 45}\degree\text{ = }(opposite)/(hypotenuse) \\ \sin \text{ 45}\degree\text{ = }\frac{a}{5\sqrt[]{2}} \\ 5\sqrt[]{2}\text{ (sin45}\degree)=a_{} \\ 5\sqrt[]{2}\text{ }*\text{(}\frac{\sqrt[]{2}}{2})\text{ = a} \\ (5(2))/(2)\text{ = a} \\ a\text{ = 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rcdyv2wd874c9a0uruvk7h92tvzfvq5zwy.png)
To get c, we will use cosine ratio:
![\begin{gathered} \cos \text{ 45}\degree\text{ = }\frac{adjacent}{\text{hypotenuse}} \\ \cos 45\degree\text{ = }\frac{c}{5\sqrt[]{2}} \\ 5\sqrt[]{2}\text{ (cos 45}\degree)\text{ = c} \\ 5\sqrt[]{2}\text{ (}\frac{\sqrt[]{2}}{2})\text{ = c} \\ (5(2))/(2)\text{ = c} \\ c\text{ = 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pl7tt1h7vyuqthdvozhk0rqifv6nvgf6dk.png)
From right triangle:
angle = 30°
To get b, we will apply sine ratio:

To get d, we will apply cosine ratio:
![\begin{gathered} \cos \text{ 30}\degree\text{ = }\frac{adjacent}{\text{hypotenuse}} \\ \cos \text{ 30}\degree\text{ = }(d)/(b) \\ \cos \text{ 30}\degree\text{ = }(d)/(10) \\ 10(\cos \text{ 30}\degree)\text{ = d} \\ 10*\frac{\sqrt[]{3}}{2}\text{ = d} \\ d\text{ = 5}\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f62mfamjavm2u22at36uoh10o732k6cqgq.png)