To find EF, we will use the formula;
cosθ = adjacent / hypotenuse
From the diagram,
adjacent = 9√3
hypotenuse =EF
cos 30 = 9√3 / EF
![EF\text{ =}\frac{9\sqrt[]{3}}{\cos 30}](https://img.qammunity.org/2023/formulas/mathematics/college/pad93itewcek37lou9k202ndckg73c056r.png)
EF = 9√3 / cos 30
EF= 18
To find DE, we will use the formula;
tan θ = opposite / adjacent
tan 30 = DE /9√3
DE= (9√3) tan 30
DE= 9
To find m
30° + 90° + m
120° + m
subtract 120° from both-side of the equation
m
m< E = 60°