194k views
3 votes
Find the indefinite integral by making a change of variables. (Use C for the constant of integration.)

Find the indefinite integral by making a change of variables. (Use C for the constant-example-1
User Oniel
by
3.5k points

1 Answer

5 votes

The Solution:


\int(x+3)√(5-x)\text{ }dx

We are required to find the indefinite integral.

Step 1:


\begin{gathered} Let\text{ }u=5-u \\ (du)/(dx)=-1 \\ dx=-du \end{gathered}
\begin{gathered} x=5-u \\ \\ x+3=5-u+3=8-u \end{gathered}

Substituting, we get


\int-(8-u)√(u)\text{ }du=\int(u-8)u^{(1)/(2)}\text{ }du=\int u^{(3)/(2)}-8u^{(1)/(2)}\text{ }du
\begin{gathered} =(2)/(5)u^{(5)/(2)}-(16)/(3)u^{(3)/(2)}+C \\ \\ \text{ Substituting }5-x\text{ for u, we get} \\ \\ =(2)/(5)(5-x)^{(5)/(2)}-(16)/(3)(5-x)^{(3)/(2)}+C \end{gathered}

Therefore, the corect answer is

User Alfi
by
4.4k points