Statement Problem: Given the equation,

What is the solution(s)?
Solution:
Step 1: Divide through by 3;

Step 2: Subtract 1 from both sides of the equation,

Step 3: Add the square of half of the coeffient of x to both sides of the equation;

Step 4: Factorize the left side and simplify the right side,

Step 5: Take square root of both sides,
![\begin{gathered} \sqrt[]{(x+(5)/(6))^2}=\sqrt[]{-(11)/(36)} \\ \sqrt[]{(x+(5)/(6))^2}=\frac{\sqrt[]{-11}}{\sqrt[]{36}} \\ x+(5)/(6)=\pm\frac{i\sqrt[]{11}}{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wliw7nnpfp9etj5x7rvpoz615z7mcr25xb.png)
Step 6: Subtract 5/6 from both sides of the equation,
![\begin{gathered} x+(5)/(6)-(5)/(6)=-(5)/(6)\pm\frac{i\sqrt[]{11}}{6} \\ x=\frac{-5\pm i\sqrt[]{11}}{6} \\ x_1=\frac{-5+i\sqrt[]{11}}{6},x_2=\frac{-5-i\sqrt[]{11}}{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i0e7dgdfa1hjlwpai42juq6q6xicpjaqwc.png)