SOLUTION
Let us start with the sketch of the figure
Using the trigonometric functions to obtain the measure of the angle.
From the image above,
![\begin{gathered} \text{Hypotenuse}=50ft \\ \text{Opposite}=40ft \\ \theta=\text{?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u74mpvchur863q4gdvcky0ju3jy89s2qpl.png)
Thus, the trigonometric function that correlates both the opposite and the hypotenuse together is the Sine of angles.
![\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/bzzn3f7mj87d6awx4jyitkxgatgeup6pyg.png)
Solving for θ
![\begin{gathered} \sin \theta=(40)/(50)=(4)/(5)=0.8 \\ \sin \theta=0.8 \\ \therefore\theta=\sin ^(-1)0.8=53.1301\approx53.13^0(nearest\text{ 2 decimal places)} \\ \therefore\theta=53.13^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/68yz7068i1ddkkm9fq73vge16rg046epqx.png)
Hence, the measure of the angle the string forms with the ground is
![53.13^0](https://img.qammunity.org/2023/formulas/mathematics/college/8a14e88wsmiybmvjwcjmv1bu8qtx8l5xkf.png)