To go from
![y=\sqrt[]{x}](https://img.qammunity.org/2023/formulas/mathematics/college/z3kevgn2c29nk34ba6n3a5xhvm9rhyzg0b.png)
to
![y=2\sqrt[]{-x-5}+3.](https://img.qammunity.org/2023/formulas/mathematics/college/553c6qm8pyj5veoktnt9h3q1ey24sec9oo.png)
First, we reflect over the y-axis, and get:
![y=\sqrt[]{-x}\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/69j2uqsb6lbelnj7mmupvzm6ntkutjz28x.png)
Second, we translate horizontally 5 units to the right, and get:
![y=\sqrt[]{-x-5}.](https://img.qammunity.org/2023/formulas/mathematics/college/coz4q0hdvztp3ixuyswwuh5vgg223opbaa.png)
Third, we stretch vertically by a scale factor of 2, and get:
![y=2\sqrt[]{-x-5}.](https://img.qammunity.org/2023/formulas/mathematics/college/1p59m71lma1vq0dhoczvt4j1s9j2lnb48w.png)
Finally, we translate vertically 3 units up, and get:
![y=2\sqrt[]{-x-5}+3](https://img.qammunity.org/2023/formulas/mathematics/college/n4jgyvwfhdhfzo9x2iw3qgn9lgbfq2v361.png)
Answer: The function is reflected over the y-axis, translated horizontally 5 units to the right, stretched vertically by a scale factor of 2, and finally translated vertically 3 units up.