92.1k views
5 votes
Triangle QRS has coordinates Q(-6, 6), R(-6, 0) and S(0,0). Translate triangle QRS 7 units right , then rotated 90 clockwise about the origin. What are the coordinates of the final image?

User Viszman
by
3.9k points

1 Answer

2 votes

The rule for translating a point 7 units to the right is given by


(x,y)\to(x+7,y)
\begin{gathered} Q^{^(\prime)}=(-6+7,6) \\ Q^{^(\prime)}=(1,6) \\ R^{^(\prime)}=(-6+7,0) \\ R^{^(\prime)}=(1,0) \\ S^{^(\prime)}=(0+7,0) \\ S^{^(\prime)}=(7,0) \end{gathered}
\begin{gathered} \text{For 90}^0\text{ clockwise about the origin, the translation becomes:} \\ (x,y)\rightarrow(y,-x) \end{gathered}

Hence, the coordinates of the final image are:


\begin{gathered} Q^{^(\doubleprime)}=(6,-1) \\ R^{^(\doubleprime)}=(0,-1) \\ S^{^(\doubleprime)}=(0,-7) \end{gathered}

User Piwo
by
4.0k points