49.3k views
0 votes
Consider the following quadratic equation. Find the real zeros, if any, of this function. Reduce all fractions to lowest term.

Consider the following quadratic equation. Find the real zeros, if any, of this function-example-1
User Ouda
by
3.6k points

1 Answer

2 votes

The given function is


y=x^2-8x+12\text{ }

To find the zeros, we use the quadratic formula.


x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

Where a = 1, b = -8, and c = 12.


\begin{gathered} x=\frac{-(-8)\pm\sqrt[]{(-8)^2-4(1)(12)}_{}}{2(1)}=\frac{8\pm\sqrt[]{64-48}}{2} \\ x=\frac{8\pm\sqrt[]{16}}{2}=(8\pm4)/(2)=4\pm2 \\ x_1=4+2=6 \\ x_2=4-2=2 \end{gathered}

Therefore, the zeros x = 6 and x = 2.

User Jonathan Viccary
by
3.2k points