The form of the quadratic equation is
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
The coordinates of its vertex are (h, k), where
![\begin{gathered} h=-(b)/(2a) \\ k=f(h) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dq5m36ed5wdkdtjzqqa2mkdcbpvwjiwrql.png)
The given equation is
![y=-x^2+2x-1](https://img.qammunity.org/2023/formulas/mathematics/college/c4q5ixob0zy36tvjmz52vik4xq3lafedps.png)
Compare it with the form above
![\begin{gathered} a=-1 \\ b=2 \\ c=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sgavb75aanmxws1lyzy3wcmhippvqdvesl.png)
To find its x-intercepts, substitute y by 0
![\begin{gathered} 0=-x^2+2x-1 \\ -x^2+2x-1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/646vzflchzrk34k6w5udtwbvt93f7te58p.png)
Multiply both sides by -1
![x^2-2x+1=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/flj9r100i86iwsgqlkkgsrsg9wt4vejmuq.png)
Factor it into 2 factors
![\begin{gathered} x^2=(x)(x) \\ 1=(-1)(-1) \\ (x)(-1)+(x)(-1)=-x-x=-2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/drp56b5ayzcu2hwu30817jqlw08jndg4gg.png)
Then the factors are (x - 1) and (x - 1)
![\begin{gathered} x^2-2x+1=(x-1)(x-1)_{} \\ (x-1)(x-1)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k3y9nanhj0dfyq3l4okuma2tqnv094lugt.png)
Equate the factor by 0 to find x
![\begin{gathered} x-1=0 \\ x-1+1=0+1 \\ x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ve8rt6ex906tnjif643bulz4o5jfb30le.png)
There is one x-intercept (1, 0)
To find the vertex use the rule of the vertex up
![\begin{gathered} h=-(2)/(2(-1)) \\ h=-(2)/(-2) \\ h=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bx8bmxbogeqt9u09wy2myfn9pnxfy5z785.png)
Substitute x by 1 in the equation to find k
![\begin{gathered} k=-(1)^2+2(1)-1 \\ k=-1+2-1 \\ k=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ijz3ukd5k0zgckiigvb34uicz4bi1c5q1n.png)
The coordinates of the vertex are (1, 0)