Answer:
The volume of a cone is calculated using the formula below
![V_(cone)=(1)/(3)\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/college/aonauvlvxe8qd85rbovpz5p4nl86zxat7y.png)
The height is multiplied by 4, we will have the new height be
![\begin{gathered} h=4* h \\ h=4h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a51i88vd4kx4ivb1axw7zm9fxibsnsjr0s.png)
The radius id multiplied by 4, we will have the new radius be
![\begin{gathered} r=4* r \\ r=4r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/19ss40kciumbu75u5fjals4ialrle2qu5t.png)
By substituting the new values of the height and radius in the equation od the volume of a cone, we will have
![\begin{gathered} V_(cone)=(1)/(3)*\pi r^2h \\ V_2=(1)/(3)*\pi*(4r)^2*(4h) \\ V_1=(1)/(3)*64\pi r^2h \\ V_1=(64)/(3)\pi r^2h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tyf59okjb4fn9g8ke9v3qzi2txadoapgg7.png)
By dividing the new volume by the initial volume, we will have
![\begin{gathered} =((64)/(3)\pi r^2h)/((1)/(3)\pi r^2h) \\ =64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o2z5b3ky6ha01p0s6m8oar339t2milg6s9.png)
Hence,
The final answer is
The volume of the cone is multiplied by 64